Aller au contenu principal

近視構成的眼睛健康風險

風險

與近視相關的風險

近視與成年後眼睛健康風險的增加有關。這些風險包括:
  • 近視性黃斑病變 (MMD)1
  • 後鞏膜葡萄腫2
  • 視網膜脫離3
  • 原發性開角型青光眼4
  • 白內障5
在以上疾病中,近視性黃斑病變 和視網膜脫落對視力影響最大, 並且與近視和較長的眼軸最密 切相關(表 1)6。在 75 歲或以 上的人群中,他們受不同成因的 視力受損(VA 0.3 至 0.05, 約 20/60 至 20/400)或失明 (VA<0.05 約差於 20/400) 的累積風險,由眼軸長度少於 26 mm 的 3.8%,增加至眼軸長 度 26 mm 或以上的 25%,而眼 軸長度多於 30 mm 的風險更高 於 90% 以上7

Table 1

表 1:根據不同近視度數與正視者相比,60 歲以上近視者增加患上眼疾的 可能性(優勢比)6

Table 1 Tips

*僅適用於 -6.00 至 -10.00 D 的近視。-10.00 至 -15.00 D 的近視的優勢比為 7.8,-15.00 D 以上的近視的優勢比為 88。
+小數視力為 0.30 至 0.05(約 20/60 至 20/400)。

威脅

近視已成為 21 世紀影響眼睛健康的最大威脅

每當兒童出現近視時,眼科專業人士便應即時建議採用近視管理方案來治療, 從而降低日後出現威脅視力的併發症風險。

Prevalence of myopia

Graphic symbol showing “2x” with arrow directed upwards, representing doubling of population with myopia in recent years.
近視的患病率 在過去 20 年裡幾 乎增加了一倍。8

Both Eastern and Western populations

Graphic symbol of globe representing worldwide prevalence of myopia.
東西方人口 均出現近視患病率不 斷增加的趨勢。8

No safe level of myopia,

Graphic symbol showing an exclamation mark to emphasize there is no safe level of myopia.
近視沒有安全線可言,超過 30% 的近視黃斑性病 變發 生在近視低於 -6.00 D 的人身上。9

Every additional diopter

Graphic symbol showing arrow pointing diagonally upwards representing increasing myopia risk the greater the refractive error.
屈光度每增加 1D,患上近視黃斑性病變的 風險就會增加 67%。10

25% of people

Graphic symbol displaying 25%.
在眼軸長度 ≥26 mm 的 人中,有 25% 的人 到了 75 歲會出現視力受損。7

降低日後出現威脅視力的併發症的風險。

Prevalence of myopia

Graphic symbol showing “2x” with arrow directed upwards, representing doubling of population with myopia in recent years.
近視的患病率 在過去 20 年裡幾 乎增加了一倍。8

Both Eastern and Western populations

Graphic symbol of globe representing worldwide prevalence of myopia.
東西方人口 均出現近視患病率不 斷增加的趨勢。8

No safe level of myopia,

Graphic symbol showing an exclamation mark to emphasize there is no safe level of myopia.
近視沒有安全線可言,超過 30% 的近視黃斑性病 變發 生在近視低於 -6.00 D 的人身上。9

Every additional diopter

Graphic symbol showing arrow pointing diagonally upwards representing increasing myopia risk the greater the refractive error.
屈光度每增加 1D,患上近視黃斑性病變的 風險就會增加 67%。10

25% of people

Graphic symbol displaying 25%.
在眼軸長度 ≥26 mm 的 人中,有 25% 的人 到了 75 歲會出現視力受損。7

兒童近視管理:需要新思維

近視是一種會不斷連續性進展的疾病,應儘早對其進行評估。近視可能會在十幾歲以後繼續加深11,並且患上相關疾病的風險會隨著近視的嚴重程度呈 指數式地增加6,10,因此早期診斷和儘早管理對於終身的眼睛健康非常重要。

Children image

Boy wearing glasses who may have myopia, climbing a jungle gym outside.

較早出現近視會增加日後深近視的風險

年齡較小的兒童近視加深速度更 快12。因為早出現近視味著其加深 的時間更長,所以 12 歲以下的近 視者患上深度近視的風險更大。 因此,必須採取以下行動:
  • 對 3-5 歲的兒童最少進行一次檢 查作為基數測量
  • 對所有兒童最少每年檢查一次, 直到其年滿 18 歲

Table 2

表 2:根據球面等效屈光不正對近視進行分類13
較早出現近視會增加日後深近視的風險

較早出現近視會增加日後深近視的風險

年齡較小的兒童近視加深速度更 快12。因為早出現近視味著其加深 的時間更長,所以 12 歲以下的近 視者患上深度近視的風險更大。 因此,必須採取以下行動:
  • 對 3-5 歲的兒童最少進行一次檢 查作為基數測量
  • 對所有兒童最少每年檢查一次, 直到其年滿 18 歲

Table 2

表 2:根據球面等效屈光不正對近視進行分類13

屈光度數可以預測近視的出現

許多風險因素可以幫助預測近視的 出現,但最佳的預測因素是在特定 年齡時驗出的散瞳等效球面度數。特定年齡(表 3)中具有低遠視度 數的兒童在 13 歲時出現近視的可能 性超過 80%13。它提供了一種簡單 的臨床方法,可用於評估近視出現 的風險,其準確性更可媲美複雜的 計算方法。

Table 3

表 3:當 13 歲時高危出現近視的兒童,在其不同年齡時利用電腦驗光的散瞳等效球面臨界度數15
屈光度數可以預測近視的出現

屈光度數可以預測近視的出現

許多風險因素可以幫助預測近視的 出現,但最佳的預測因素是在特定 年齡時驗出的散瞳等效球面度數。特定年齡(表 3)中具有低遠視度 數的兒童在 13 歲時出現近視的可能 性超過 80%13。它提供了一種簡單 的臨床方法,可用於評估近視出現 的風險,其準確性更可媲美複雜的 計算方法。

Table 3

表 3:當 13 歲時高危出現近視的兒童,在其不同年齡時利用電腦驗光的散瞳等效球面臨界度數15

Every additional diopter image

Graphic symbol illustrating eye in front of eye chart, representing the important of measuring refractive error.

早期治療的重要性:每一百度都很重要

  • 如果兒童被確診為近視前期或近視,那近視極有可能繼續加深16。近視管理的目標是盡可能限制眼軸長度和屈光度數,確保可把眼軸長度保持在 26 mm 6,7 以下,近視度數小於 5.00 D 或 500度13
  • 近視度數降低 1.00 D 或 100 度,那麼患者出現近視性黃斑病 變的可能性會降低約 40%10
  • 在 12 歲或之前對所有近視兒童進行臨床治療,並為近視前期兒童提供最低限度的生活方式指導
早期治療的重要性:每一百度都很重要

Every additional diopter image

Graphic symbol illustrating eye in front of eye chart, representing the important of measuring refractive error.

早期治療的重要性:每一百度都很重要

  • 如果兒童被確診為近視前期或近視,那近視極有可能繼續加深16。近視管理的目標是盡可能限制眼軸長度和屈光度數,確保可把眼軸長度保持在 26 mm 6,7 以下,近視度數小於 5.00 D 或 500度13
  • 近視度數降低 1.00 D 或 100 度,那麼患者出現近視性黃斑病 變的可能性會降低約 40%10
  • 在 12 歲或之前對所有近視兒童進行臨床治療,並為近視前期兒童提供最低限度的生活方式指導

出現近視的風險因素

  • 年齡較小12
  • 屈光度數(参考表 3)15
  • 極少的戶外活動時間(每天少於 2 小時)17
  • 長時間近距離工作或極近距離工作18,19
  • 父母近視20

Table 4

表 4:近視發展或出現的可能性以及根據年齡和屈光狀態推薦的臨床措施

Table 4 tips

†所有近視控制療法都建議納入生活方式指導
‡近視前期的治療由父母/患者和醫生酌情決定
出現近視的風險因素

出現近視的風險因素

  • 年齡較小12
  • 屈光度數(参考表 3)15
  • 極少的戶外活動時間(每天少於 2 小時)17
  • 長時間近距離工作或極近距離工作18,19
  • 父母近視20

Table 4

表 4:近視發展或出現的可能性以及根據年齡和屈光狀態推薦的臨床措施

Table 4 tips

†所有近視控制療法都建議納入生活方式指導
‡近視前期的治療由父母/患者和醫生酌情決定
Graphic symbol of trees and sun on hill illustrating the importance of outdoor time to delay onset of myopia in children.

生活方式指導

證據顯示戶外活動是一種能夠延 緩兒童出現近視的方法21。越來越 多的證據表明,多進行戶外活動 還可以延緩近視的發展22。增加 戶外活動的時間能夠使所有兒童 獲益。
生活方式指導
Graphic symbol of trees and sun on hill illustrating the importance of outdoor time to delay onset of myopia in children.

生活方式指導

證據顯示戶外活動是一種能夠延 緩兒童出現近視的方法21。越來越 多的證據表明,多進行戶外活動 還可以延緩近視的發展22。增加 戶外活動的時間能夠使所有兒童 獲益。

參考文獻

1. Ohno-Matsui K et al. Updates of Pathologic Myopia. Prog Retin Eye Res 2016;52:156-87.
2. Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia. Prog Retin Eye Res 2019;70:99-109.
3. Mitry D et al. The Epidemiology of Rhegmatogenous Retinal Detachment: Geographical Variation and Clinical Associations. Br J Ophthalmol 2010;94:678-84.
4. Marcus MW et al. Myopia as a Risk Factor for Open-Angle Glaucoma: A Systematic Review and Meta-Analysis. Ophthalmol 2011;118:1989-94.
5. Pan CW et al. Myopia and Age-Related Cataract: A Systematic Review and Meta-Analysis. American Journal of Ophthalmology 156.5 (2013): 1021-1033.
6. Haarman AE et al. The Complications of Myopia: A Review and Meta-Analysis. Investigative Ophthalmology & Visual Science. 2020 Apr 9;61:49.
7. Tideman JW et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol 2016;134:1355-63.
8. Holden BA et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmol 2016;123:1036-42.
9. Wong, Yee-Ling, et al. "Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore." Investigative Ophthalmology & Visual Science 59.11 (2018): 4603-4613.
10. Bullimore MA, Brennan NA. Myopia Control: Why Each Diopter Matters. Optom Vis Sci 2019;96:463-5.
11. Pärssinen, Olavi, and Markku Kauppinen. "Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood." Acta Ophthalmologica 97.5 (2019): 510-518.
12. Chua SY et al. Age of Onset of Myopia Predicts Risk of High Myopia in Later Childhood in Myopic Singapore Children. Opthal Physiol Opt 2016;36:388-94.
13. World Health Organization - Brien Holden Vision Institute. The impact of myopia. In: The Impact of Myopia and High Myopia. Report of the Joint World Health Organization--Brien Holden Vision Institute Global Scientific Meeting on Myopia. Available at: https://www.visionuk.org.uk/download/WHO_Report_Myopia_2016.pdf
14. Flitcroft DI et al. IMI–Defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Investigative ophthalmology & visual science. 2019;60:M20-30.
15. Zadnik K et al. Prediction of Juvenile Onset Myopia. JAMA Opthalmol 2015;133:683-9.
16. Mutti DO et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia.Invest Ophthalmol Vis Sci.2007;48:2510-9.
17. Wu PC et al. Increased Time Outdoors Is Followed by Reversal of the Long-Term Trend to Reduced Visual Acuity in Taiwan Primary School Students. Ophthalmology.2020 Feb 8:S0161-6420(20)30139-1.
18. Huang et al. The Association between Near Work Activities and Myopia in Children:A Systematic Review and Meta-Analysis.PLoS One 2015;10:e0140419.
19. Wen L et al. Objectively measured near work, outdoor exposure and myopia in children.British Journal of Ophthalmology Published Online First:19 February 2020. doi:10.1136/ bjophthalmol-2019-315258.
20. Tedja MS et al. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 2019;60:M89-M105.
21. He M et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA.2015;314:1142-8.
22. Wu PC et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial.Ophthalmol.2018;125:1239-50.

HKM20230630_002
參考文獻

參考文獻

1. Ohno-Matsui K et al. Updates of Pathologic Myopia. Prog Retin Eye Res 2016;52:156-87.
2. Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia. Prog Retin Eye Res 2019;70:99-109.
3. Mitry D et al. The Epidemiology of Rhegmatogenous Retinal Detachment: Geographical Variation and Clinical Associations. Br J Ophthalmol 2010;94:678-84.
4. Marcus MW et al. Myopia as a Risk Factor for Open-Angle Glaucoma: A Systematic Review and Meta-Analysis. Ophthalmol 2011;118:1989-94.
5. Pan CW et al. Myopia and Age-Related Cataract: A Systematic Review and Meta-Analysis. American Journal of Ophthalmology 156.5 (2013): 1021-1033.
6. Haarman AE et al. The Complications of Myopia: A Review and Meta-Analysis. Investigative Ophthalmology & Visual Science. 2020 Apr 9;61:49.
7. Tideman JW et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol 2016;134:1355-63.
8. Holden BA et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmol 2016;123:1036-42.
9. Wong, Yee-Ling, et al. "Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore." Investigative Ophthalmology & Visual Science 59.11 (2018): 4603-4613.
10. Bullimore MA, Brennan NA. Myopia Control: Why Each Diopter Matters. Optom Vis Sci 2019;96:463-5.
11. Pärssinen, Olavi, and Markku Kauppinen. "Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood." Acta Ophthalmologica 97.5 (2019): 510-518.
12. Chua SY et al. Age of Onset of Myopia Predicts Risk of High Myopia in Later Childhood in Myopic Singapore Children. Opthal Physiol Opt 2016;36:388-94.
13. World Health Organization - Brien Holden Vision Institute. The impact of myopia. In: The Impact of Myopia and High Myopia. Report of the Joint World Health Organization--Brien Holden Vision Institute Global Scientific Meeting on Myopia. Available at: https://www.visionuk.org.uk/download/WHO_Report_Myopia_2016.pdf
14. Flitcroft DI et al. IMI–Defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Investigative ophthalmology & visual science. 2019;60:M20-30.
15. Zadnik K et al. Prediction of Juvenile Onset Myopia. JAMA Opthalmol 2015;133:683-9.
16. Mutti DO et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia.Invest Ophthalmol Vis Sci.2007;48:2510-9.
17. Wu PC et al. Increased Time Outdoors Is Followed by Reversal of the Long-Term Trend to Reduced Visual Acuity in Taiwan Primary School Students. Ophthalmology.2020 Feb 8:S0161-6420(20)30139-1.
18. Huang et al. The Association between Near Work Activities and Myopia in Children:A Systematic Review and Meta-Analysis.PLoS One 2015;10:e0140419.
19. Wen L et al. Objectively measured near work, outdoor exposure and myopia in children.British Journal of Ophthalmology Published Online First:19 February 2020. doi:10.1136/ bjophthalmol-2019-315258.
20. Tedja MS et al. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 2019;60:M89-M105.
21. He M et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA.2015;314:1142-8.
22. Wu PC et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial.Ophthalmol.2018;125:1239-50.

HKM20230630_002